
The Pearson product–moment correlation coefficient is being used
to evaluate the similarity of the high-performance liquid
chromatographic fingerprints of traditional Chinese medicine
(TCM) in China. It is confirmed that a large range of peak areas
produced the wrong results. A new algorithm concerning weighted
Pearson product–moment correlation coefficient is proposed in
this article. The results for both real cases and simulated data sets
show that the weighted Pearson product–moment correlation
coefficients allow relatively larger differences for large values,
smaller differences for small values, and more reliable results than
the unweighted Pearson product–moment correlation coefficients.
Weight selection depends on the specific scientific problem.

Introduction

Traditional Chinese medicine (TCM) has been used in China
for thousands of years, and its curative effect has been cert i f i e d .
But quality control is one of the most difficult problems. A fin-
gerprinting technique is prescribed to control the quality of the
injections of TCM. The content of TCM components can be
reflected by the peaks areas of the chromatographic fingerprint.
The stable area of the peaks is a pre requisite to stable quality of
TCM. The similarity measures can reflect the diff e rences of
the peak areas of two chromatographic fingerprints.

The Pearson product–moment correlation coefficient is one
of the association measures (1). It was introduced by Karl
Pearson (2) and has been used to evaluate the similarity of
spectrum, electrophoresis, and other kinds of data sets (3–6). 

The Pearson product–moment correlation coefficient r for
variables x and y is described as follows (7):

Eq. 1

where x– and y– are the averages of the x and y measurements
and � donates summation over all n observations.

This correlation coefficient is widely applied to evaluate the
similarity of the chromatographic fingerprints of TCM (8,9) in
China. Some studies have found those that are not sensitive to
proportional or additive changes as a similarity measure (10).
If the range of the data is wide, the Pearson product–moment
c o rrelation coefficient often seems close to 1 (10,13). Both
n o rmalizing transformation and logarithmic transformation of
data sets have been used before calculating the Pearson
p roduct–moment correlation coefficient (12,13). In this art i c l e ,
a new algorithm named the weighted Pearson pro d u c t –
moment correlation coefficient is proposed. It can allow rela-
tively larger diff e rences for large values and smaller diff e r-
ences for small values. The results show it is able to deal with
some cases meeting the mentioned problems. And more reli-
able results than the unweighted Pearson product–moment
correlation coefficients were obtained for both real cases and
simulated data sets. 

Theory
The Pearson product–moment correlation coefficient r can

be deduced from the slope b and intercept a of the simple
regression line of y on x (14). For the simple regression line
y = a + bx:

Eq. 2 

Among which

Eq. 3

and

Eq. 4

T h e Pearson product–moment correlation coefficient r i s
calculated according to the formula:
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Eq. 5

We introduced the weighted Pearson product–moment cor-
relation coefficient r from the slope b and intercept a of the
weighted regression line of y on x where:

Eq. 6

and:

Eq. 7

Therefore, the weighted Pearson product–moment correla-
tion coefficient rw can be calculated according to the formula:

Eq. 8

Among which:

Eq. 9

For the weighted re g ression line, the usual weights are as wi
= k/xi or w = k/xi

2. Because there are no dependent variables or
independent variables in the comparison of similarity, we com-
bined 1/x and 1/y together as a weighting factor:

Eq. 10

as well as 1/x2 and 1/y2 as another weighting factor:

Eq. 11

Experimental

The Yinzhihuang injection is composed of baicalin and the
extractions of Cardenia jasminoides Ellis, Artemisia Capillris
Thunb, and Lonicera japonica. This is used in China as a cure
for hepatitis. A reversed-phase high-performance liquid chro-
matographic (HPLC) method was developed to analyze Yi n z h i-
huang injections. A Shimadzu LC-10AT HPLC was used (Kyoto,
Japan). A Shimadzu SPD-10A UV detector was set at a wave-
length of 230 nm. A mobile phase of methanol–sodium 
d i h y d rogen phosphate (0.1 mol/L, pH 2.5)–tetrahydro f u r a n
(40:80:16) was delivered at a flow rate of 1 mL/min. Twenty
m i c roliters of solution was analyzed on the C18 column (20 cm
× 4.6 mm, 5 µm) (Dalian Elite Scientific Instruments Co.,
Dalian, China). The analysis was carried out at 30°C. 

Yinzhihuang injections were manufactured by Jiangsu Wu j i n
P h a rmaceutical Factory (Jiangsu, China). The re f e re n c e
materials (baicalin, gardenoside, and chlorogenic acid) were
p u rchased from the National Institute for the Control of
Pharmaceutical and Biological Products (Beijing, China).

.

,

Figure 1. The HPLC chromatogram of Yinzhihuang Injection and the 17
common peaks.

Time (min)

Table I. The Relative Areas of the Common Peaks in the 10 Samples of Yinzhihuang Injection

Peak 1 2 3 4 5 6 7 8 9 10 RSD (%)

1 6.424 6.522 6.636 6.705 6.438 6.176 6.105 6.113 6.413 6.343 3.3
2 4.045 3.987 4.085 4.201 5.514 4.407 3.827 4.286 3.806 4.116 11.6
3 1.608 1.592 1.429 1.381 1.588 1.363 1.038 1.921 1.057 1.240 19.1
4 1.499 1.357 1.004 1.446 1.409 0.9645 1.201 1.079 2.152 1.308 25.4
5 1.647 1.617 2.129 1.208 1.616 2.063 1.984 3.432 1.286 2.143 33.0
6 1.846 1.764 2.144 2.244 1.816 2.412 2.012 2.305 1.673 2.008 12.4
7 4.151 4.177 4.186 4.825 4.044 4.223 4.413 3.047 2.811 3.436 16.1
8 19.64 19.50 19.46 18.93 21.33 18.87 19.61 20.72 21.02 21.46 4.9
9 12.72 12.57 12.53 12.56 12.62 12.08 11.70 7.950 12.16 13.68 12.8

10 1417.1 1493.9 1343.7 1334.9 1388.5 1318.3 1567.7 1527.1 1395.4 1350.9 6.2
11 3.300 2.715 3.051 3.118 3.311 2.984 2.838 2.627 4.035 3.102 12.8
12 1.639 1.666 1.236 2.260 1.682 1.209 1.375 1.744 1.679 1.613 18.7
13 1.300 1.618 1.601 1.262 1.102 0.7584 1.512 1.176 1.811 2.400 31.0
14 39.70 43.03 40.65 41.35 39.77 40.40 43.07 46.63 39.86 43.42 5.4
15 100 100 100 100 100 100 100 100 100 100 0
16 13.62 13.76 14.18 15.56 13.56 14.73 13.98 14.98 14.66 13.63 4.8
17 0.9270 0.9034 0.9493 0.9230 0.9538 0.9292 1.2612 0.8320 0.9466 1.0496 12.0
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Sample preparation
One milliliter of the Yinzhihuang injection was diluted to

50 mL with methanol and filtered through a 0.45-µm mem-
brane prior to analysis. The data sets were calculated by Matlab
5.3 (the MathWorks, Inc., Natick, MA).

Results and Discussion

The HPLC signals were collected until all of the compo-
nents were eluted from the column. After comparing chro-
matograms of the 10 samples of Yinzhihuang injections, 17
common peaks were found (the 17 common peaks are marked
in Figure 1).

Table II. The Pearson Product–Moment Correlation
Coefficients According to the Changes of y1 and y100

Changes Relative Changes Relative
of changes Correlation of changes Correlation
y1 (%) coefficients y100 (%) coefficients

1 0 1 100 0 1
2 100 0.999994 101 1 0.999994
3 200 0.99998 102 2 0.99998
4 300 0.99994 103 3 0.99995
5 400 0.99991 104 4 0.99991
6 500 0.9999 105 5 0.9999
7 600 0.9996 106 6 0.9998

Table III. The Pearson Product–Moment Correlation Coefficients after the Peaks No. 10 Were Reduced to 1%

1 2 3 4 5 6 7 8 9 10

1 1.0000
2 0.9995 1.0000
3 0.9999 0.9996 1.0000
4 0.9996 0.9995 0.9997 1.0000
5 0.9997 0.9991 0.9996 0.9992 1.0000
6 0.9997 0.9994 0.9999 0.9998 0.9995 1.0000
7 0.9993 0.9999 0.9994 0.9993 0.9989 0.9993 1.0000
8 0.9962 0.9979 0.9969 0.9969 0.9962 0.9969 0.9983 1.0000
9 0.9996 0.9991 0.9995 0.9993 0.9996 0.9993 0.9989 0.9964 1.0000
10 0.9991 0.9996 0.9994 0.9990 0.9991 0.9990 0.9993 0.9974 0.9991 1.0000

Table IV. The Weighted Pearson Product–Moment Correlation Coefficients of the 10 Samples of the Yinzhihuang Injection* 

Samples Weight 1 2 3 4 5 6 7 8 9 10

1 w1 1.0000
w2 1.0000

2 w1 0.9998 1.0000
w2 0.9958 1.0000

3 w1 0.9997 0.9993 1.0000
w2 0.9843 0.9869 1.0000

4 w1 0.9995 0.9990 0.9996 1.0000
w2 0.9879 0.9848 0.9612 1.0000

5 w1 0.9998 0.9994 0.9996 0.9995 1.0000
w2 0.9947 0.9874 0.9774 0.9844 1.0000

6 w1 0.9995 0.9990 0.9998 0.9996 0.9995 1.0000
w2 0.9729 0.9584 0.9735 0.9550 0.9781 1.0000

7 w1 0.9994 0.9998 0.9987 0.9982 0.9988 0.9983 1.0000
w2 0.9807 0.9828 0.9885 0.9666 0.9734 0.9675 1.0000

8 w1 0.9983 0.9987 0.9981 0.9973 0.9980 0.9979 0.9989 1.0000
w2 0.9505 0.9495 0.9630 0.9078 0.9483 0.9600 0.9461 1.0000

9 w1 0.9996 0.9993 0.9993 0.9992 0.9994 0.9989 0.9987 0.9978 1.0000
w2 0.9724 0.9683 0.9412 0.9633 0.9613 0.9016 0.9560 0.8868 1.0000

10 w1 0.9993 0.9990 0.9997 0.9993 0.9994 0.9992 0.9983 0.9976 0.9994 1.0000

w2 0.9755 0.9847 0.9862 0.9566 0.9606 0.9166 0.9840 0.9432 0.9694 1.0000

,* .
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Peak 15 is used as the internal standard. The other areas are
the relative areas. The relative areas of the 17 common peaks
of the 10 samples of the Yinzhihuang injection are shown in
Table I.

The similarity of the 10 samples can be evaluated with the
Pearson product–moment correlation coefficient. After cal-
culating all the Pearson product–moment correlation coeff i-
cients between any two of the 10 samples, it was observed that
all were located between 0.9999 and 1.0000, which means the
10 samples had great similarity. But an examination of the
data in Table I reveals that this was not the case. They did
have some clear diff e rences. As the larger of the relative stan-
d a rd deviations (%), the diff e rence should have been gre a t e r.
The results show that the Pearson product–moment corre l a-
tion coefficient was not sensitive to the signal diff e rences of
the samples.

Deficiencies of the Pearson product–moment
correlation coefficient

In order to study the deficiencies of the Pearson product–
moment correlation coefficient, we designed and tested some
simple but persuasive examples.

Example 1 
To two variables, x (1, 2, 3,…100) and y (1, 2, 3,…100), we

made some changes in the first (y1) and last number (y1 0 0) of
y, respectively (y1 was changed from 1 to 7 and y1 0 0 w a s
changed from 100 to 106) . The Pearson pro d u c t –

moment correlation coefficients between x and y w e re then
calculated (Table II).

F rom Table II, we can see that the Pearson pro d u c t –
moment correlation coefficients turned out little diff e re n c e
when y1 and y1 0 0 changed with the same absolute quantities. The
similarity was not identical when the same absolute diff e re n c e s
o c c u red on the small or the large values. However, the Pearson
p roduct–moment correlation coefficient cannot reflect the dif-
f e rent relative changes caused by the same absolute changes.

Example 2 
The Pearson product–moment correlation coeff i c i e n t s

between any two of the 10 Yinzhihuang injections were
between 0.9999 and 1.0000. Here we have the peak no. 10 of all
of the 10 samples reduced to its 1%. That means the relative
d i ff e rences of the samples did not change, but the absolute dif-
f e rences decreased gre a t l y. The Pearson product–moment cor-
relation coefficients were then calculated. The results are
shown in the Table III.

These results show that all of the Pearson pro d u c t – m o m e n t
c o rrelation coefficients between any two of the 10 samples
d e c reased, to some extent. Does this mean the similarities
d e c reased after the change? This was certainly not the case. It
was concluded that the Pearson product–moment corre l a t i o n
c o e fficient was affected by the signal range of the samples (7,11).

The weighted Pearson product–moment
correlation coefficient

Now we used the weighted Pearson
product–moment correlation coefficient
to evaluate the similarity of the 17
common peaks of the 10 samples of the
Yinzhihuang injection. The results are
given in the Table IV.

From these results we can see that the
weighted Pearson product–moment cor-
relation coefficient decreased and per-
f o rmed well. The sensitivity of the
weighted correlation coefficient was
g reater than original correlation coeff i-
cient. The differences of the 10 samples
can be clearly shown out.

In example 1, the Pearson pro d u c t –
moment correlation coefficient cannot
reflect the relative differences caused by
the same absolute diff e rences. Now we
used the weighted Pearson pro d u c t –
moment correlation coefficient to eval-
uate the similarity. The results are shown
in Table V.

From these results we can see that the
weighted Pearson product–moment cor-
relation coefficient can reflect the dif-
ferent relative differences caused by the
same absolute diff e rences. When the
absolute differences were equal the simi-
larity decreases with the increase of the
relative differences.

Table V. The Weighted Pearson Product–Moment Correlation Coefficients* 

Correlation coefficients Correlation coefficients
Changes of y1 w1 w2 Changes of y100 w1 w2

1 1 1 100 1 1
2 0.99992 0.9970 101 0.999999 0.9999995
3 0.9997 0.9894 102 0.999996 0.999998
4 0.9994 0.9777 103 0.999991 0.999996
5 0.9990 0.9624 104 0.99998 0.999992
6 0.9985 0.9441 105 0.99998 0.99999
7 0.9979 0.9234 106 0.99996 0.99998

* According to the changes of y1 and y100, , .

Table VI. The Pearson Product–Moment Correlation Coefficients after
Logarithmic Transformation for Example 1

Correlation coefficients Correlation coefficients
Changes of y1 e 10 Changes of y100 e 10

1 1 1 100 1 1
2 0.9975 0.9975 101 0.9999994 0.9999994
3 0.9936 0.9936 102 0.999998 0.999998
4 0.9895 0.9895 103 0.999995 0.999995
5 0.9857 0.9857 104 0.999991 0.999991
6 0.9821 0.9821 105 0.99999 0.99999
7 0.9787 0.9787 106 0.99998 0.99998
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Comparison between the weighted Pearson
product–moment correlation coefficient and using
normalizing transformation and logarithmic transformation

A possible way to solve such a problem is to perform a pre-
treatment for the original data sets. Both normalizing trans-
formation and logarithmic transformation have been applied
before calculating the Pearson product–moment correlation
c o e fficient (12,13). After transformation, the Pearson
product–moment correlation coefficient was calculated. 

In case of the normalizing transformation, the Pearson
product–moment correlation coefficients between any two of
the 10 Yinzhihuang injections were still between 0.9999 and
1.0000. 

The Pearson product–moment correlation coefficients after
logarithmic transformation have also been calculated for
example 1. The results are shown in Table VI. After norm a l i z i n g
the transformation and logarithmic transformation, the range
of the data decreases gre a t l y. But the Pearson pro d u c t – m o m e n t
c o rrelation coefficients nearly did not change after norm a l i z a-
tion. The Pearson product–moment correlation coefficient r i s
computed as follows after normalization:

Eq. 12

F rom this equation, the normalization factor in the numer-
ator and the denominator appears to cancel each other, and the
final form is simply the standard equation for r. The purpose of
normalization is to identify and remove systematic variation.
But it cannot improve the sensitivity of the Pearson product–
moment correlation coefficient.

After logarithmic transformation, the Pearson pro d u c t –

moment correlation coefficients changed a lot because of the
changes of the diff e rences (Figure 2). In this case, the point of
tangency of y = ln(x) and y = x – 1 is (1,0). The slope of the tan-
gent of y = ln(x) was less than 1 when x > 1, and the slope of
the tangent of y = ln(x) was larger than 1 when x < 1. The slope
of the tangent showed the speed of the changes of y against x.
That is to say the absolute diff e rences decreased after the log(e)
– transformation when x > 1 and that the absolute differences
i n c reased after the log(e) – transformation when x < 1. The re l-
ative differences of the small values changed much more than
the large values.

By comparing the Pearson product–moment corre l a t i o n
c o e fficients after logarithmic transformation with weighted
c o e fficients, we can see that the similarity all decreased, to
some extent. But they were certainly not the same thing. As for
the logarithmic transformation, the differences of the large
values were decreased, and those of the small values were rel-
atively increased. It confirmed that the characters of the data
had changed. The results after logarithmic transformation are
shown in Table VII. 

Figure 2. The change-curve of variables after log(e)-transformation.

Table VII. The Data Sets of the 10 Samples of Yinzhihuang Injection after log(e) – Transformation

Peak 1 2 3 4 5 6 7 8 9 10 RSD (%)

1 1.8600 1.8752 1.8925 1.9029 1.8622 1.8207 1.8091 1.8104 1.8583 1.8474 1.8
2 1.3975 1.3830 1.4073 1.4353 1.7073 1.4832 1.3421 1.4554 1.3366 1.4149 7.4
3 0.4750 0.4650 0.3570 0.3228 0.4625 0.3097 0.0373 0.6528 0.0554 0.2151 57.7
4 0.4048 0.3053 0.0040 0.3688 0.3429 –0.0361 0.1832 0.0760 0.7664 0.2685 87.0
5 0.4990 0.4806 0.7557 0.1890 0.4800 0.7242 0.6851 1.2331 0.2515 0.7622 49.3
6 0.6130 0.5676 0.7627 0.8083 0.5966 0.8805 0.6991 0.8351 0.5146 0.6971 17.7
7 1.4233 1.4296 1.4317 1.5738 1.3972 1.4405 1.4846 1.1142 1.0335 1.2343 12.7
8 2.9776 2.9704 2.9684 2.9407 3.0601 2.9376 2.9760 3.0311 3.0455 3.0662 1.7
9 2.5432 2.5313 2.5281 2.5305 2.5353 2.4916 2.4596 2.0732 2.4983 2.6159 6.0

10 7.2564 7.3091 7.2032 7.1966 7.2360 7.1841 7.3574 7.3311 7.2409 7.2085 0.9
11 1.1939 0.9988 1.1155 1.1372 1.1973 1.0933 1.0431 0.9658 1.3950 1.1320 10.8
12 0.4941 0.5104 0.2119 0.8154 0.5200 0.1898 0.3185 0.5562 0.5182 0.4781 39.7
13 0.2624 0.4812 0.4706 0.2327 0.0971 –0.2765 0.4134 0.1621 0.5939 0.8755 94.5
14 3.6814 3.7619 3.7050 3.7221 3.6831 3.6988 3.7628 3.8422 3.6854 3.7709 1.4
15 4.6052 4.6052 4.6052 4.6052 4.6052 4.6052 4.6052 4.6052 4.6052 4.6052 0
16 2.6115 2.6218 2.6518 2.7447 2.6071 2.6899 2.6376 2.7067 2.6851 2.6123 1.8
17 –0.0758 –0.1016 –0.0520 –0.0801 –0.0473 –0.0734 0.2321 –0.1839 –0.0549 0.0484 –285.6
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For the weighted Pearson product–moment correlation coef-
ficient, the characters of the data did not change at all. Its
i m p roved sensitivity can be explained from the weighted
regression line. For the simple regression line, there are no
l a rge derivations from the line for all of the values. But for the
weighted re g ression line, large values can have relatively larg e r
derivation, and small values can have relatively smaller deriva-
tion. The same absolute difference on the small values or on
the large values has almost the same effect on the Pearson
product–moment correlation coefficient. Using the weighted
Pearson product–moment correlation coefficient, the simi-
larity will decrease when the same absolute difference on the
small values than on the large values.

Conclusion

F rom the preceeding, the conclusion can be made that
weighted Pearson product–moment correlation coefficient is
necessary when the range of the peak areas is large. The char-
acters of the data do not change. It allows relatively larg e r
differences for large values and smaller differences for small
values. The results are more reliable than the Pearson
p roduct–moment correlation coefficients. The selection of the
weight depends on the specific scientific cases.
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